This page reports the details of the paper untitled "Estimate User Meaningful Places through Low-Energy Mobile Sensing" and published in the proceedings of the of the 2016 edition of the IEEE International Conference on Systems, Man, and Cybernetics.
On the left you can find the poster that I used to present the paper at the conference.
Abstract: Due to the increasing spread of location-aware applications, developers interest in user location estimation has grown in recent years. As users spend the majority of their time in few meaningful places (i.e., groups of near locations that can be considered as a unique place, such as home, school or the workplace), this paper presents a new energy efficient method to estimate user presence in a meaningful place. Specifically, instead of using commonly used but energy hungry methods such as GPS and network positioning techniques, the proposed method applies a Machine Learning algorithm based on Decision Trees, to predict the user presence in a meaningful place by collecting and analyzing: a) user activity, b) information from received notifications (receipt time, generating service, sender-receiver relationship), and c) device status (battery level and ringtone mode). The results demonstrate that, using 20 days of training data and testing the system with data coming from 14 persons, the accuracy (percentage of correct predictions) is 89.40% (standard deviation: 8.27%) with a precision of 89.04% and a recall of 89.40%. Furthermore, the paper analyzes the importance of each considered feature, by comparing the prediction accuracy obtained with different combinations of features.